DNBSEQ-G400

Manual do usuário do conjunto de sequenciamento de alto rendimento

Número de catálogo	Mod	Especificação
1000018577	FCL SE35	SE35,45 ciclos/Conjunto
1000018578	FCL SE50	SE50,60 ciclos/Conjunto
1000018579	FCL SE100	SE100,110 ciclos/Conjunto
1000018580	FCL PE50	PE50,110 ciclos/Conjunto
1000018581	FCL PE100	PE100,210 ciclos/Conjunto
1000018582	FCL PE150	PE150,310 ciclos/Conjunto

Versão do kit: V3.1 (Observação: O uso misto de componentes de reagentes de lotes

diferentes é estritamente proibido)

Versão do manual do usuário: A0

1 Introdução 1 -
1.1 Uso pretendido 1 -
1.2 Tecnologia de sequenciamento 1 -
1.3 Análise de dados 1 -
1.4 Comprimento da leitura de sequenciamento1 -
1.5 Tempo de sequenciamento2 -
2 Fluxo de trabalho de sequenciamento2 -
3 Preparação da biblioteca 4 -
3.1 Recomendação do tamanho da inserção 4 -
3.2 Requisito da biblioteca 4 -
3.3 Segurança da amostra4 -
3.4 Preparar reagentes para a fabricação de DNB 5 -
3.5 Fabricação de DNB 5 -
3.5.1 Definir o número de reações de fabricação de DNB 5 -
3.5.2 Como fazer a DNB 5 -
3.6 Quantificar DNB 7 -
3.7 Carregar DNB 7 -
3.7.1 Carregamento de DNB no sequenciador7 -
3.7.2 Carregamento de DNB MGIDL-200 8 -
4 Preparar o cartucho de sequenciamento9 -
5 Preparar uma célula de fluxo 14 -
6 Sequenciamento 14 -
6.1 Acessar a interface principal 14 -
6.2 Carregar as DNB 15 -
6.3 Selecionar parâmetros de sequenciamento 17 -
6.4 Carregar o cartucho de reagentes 19 -
6.5 Carregar a célula de fluxo 21 -
6.6 Revisar os parâmetros 23 -
6.7 Iniciar o sequenciamento 24 -
7 Manutenção do dispositivo 25 -
7.1 Terminologia e definição 25 -
7.2 Instrução de lavagem 25 -
7.3 Preparar reagentes de lavagem 26 -
7.4 Cartucho de lavagem 27 -
7.5 Procedimentos de lavagem 28 -
7.5 Procedimentos de lavagem

Índice

7.5.1 Lavagem regular 28 -
7.5.2 Lavagem de manutenção 29 -
7.5.3 Procedimentos de lavagem completa 31 -
8 Solução de problemas 31 -
8.1 Baixa concentração de DNB 31 -
8.2 Pressão negativa anormal 31 -
8.3 Bolhas 32 -
8.4 Impurezas 32 -
8.5 Falhas na bomba 32 -
8.6 Armazenamento do cartucho de reagentes 32 -
8.7 Falha pós-carregamento 33 -
9 Equipamentos e consumíveis necessários, mas não fornecidos 34 -
10 Lista de componentes do conjunto 35 -
11 Interpretação dos resultados dos testes 41 -
12 Especificação de desempenho do produto 41 -
12.1 Precisão 41 -
12.2 Repetibilidade 41 -
12.3 Variações de lote 41 -
13 Precauções 41 -
14 Referências da literatura 42 -
15Detalhes de contato 42 -
16 Edição de idioma 42 -
17 Data da versão do manual do usuário 43 -
18 Legenda dos símbolos usados 43 -

1 Introdução

Este manual explica como realizar o sequenciamento usando o DNBSEQ-G400 Conjunto de sequenciamento de alto rendimento em DNBSEQ-G400. Ele inclui instruções sobre preparação da amostra, preparação da célula de fluxo, armazenamento do kit de sequenciamento, o protocolo de sequenciamento e manutenção do dispositivo.

1.1 Uso pretendido

Este produto é um conjunto de reagentes comumente usados para a detecção da biblioteca de DNA genômico humano. Como um reagente geral para o sistema de reação de sequenciamento, ele é usado com o instrumento de sequenciamento de genes, que visa a obter informações de sequência de amostras através de um processo de sequenciamento de alto rendimento.

1.2 Tecnologia de sequenciamento

Este conjunto de sequenciamento utiliza a tecnologia DNBSEQ[™]. Uma execução de sequenciamento começa com a hibridização de uma âncora de DNA, em seguida, uma sonda fluorescente é conectada à nanoesfera de DNA (DNB) usando a química de sequenciamento combinatório de âncora-sonda (cPAS). Por fim, o sistema de criação de imagens de alta resolução captura o sinal fluorescente. Após o processamento digital do sinal óptico, o sequenciador gera informações de sequenciamento de alta qualidade e alta precisão.

1.3 Análise de dados

Durante a execução de sequenciamento, o software de controle opera automaticamente o software de análise basecalling e fornece saídas de dados de sequenciamento bruto para análise secundária.

1.4 Comprimento da leitura de sequenciamento

Na execução de sequenciamento, o número de ciclos de sequenciamento depende do comprimento da leitura do mesmo. Por exemplo, uma execução de ciclo PE150 realiza leituras de 150 ciclos (2×150) para um total de 300 ciclos. No final da execução de sequenciamento, um adicional de 10 ciclos de leitura de índice pode ser realizado, se necessário.

Comprimento da leitura de sequenciame nto	Leitura 1 comprimento da leitura	Leitura 2 comprimento da leitura	Código de barras comprimento da leitura	Comprimento total da leitura	Ciclos máximos
SE35	35		10	35+10	55
SE50	50		10	50+10	70
SE100	100		10	100+10	120
PE50	50	50	10	100+10	120
PE100	100	100	10	200+10	220
PE150	150	150	10	300+10	320

Tabela 1-1: Ciclo de sequenciamento

1.5 Tempo de sequenciamento

Tabela 1-2: Tempo de sequenciamento para cada comprimento de leitura (horas)

Tempo (horas)	SE35	SE50	SE100	PE50	PE100	PE150
Célula de fluxo único	11,6	14,8	23,9	27,3	50,0	70,4
Célula de fluxo duplo	12	15,2	24,3	28,1	51,0	72,6
Análise de dados	0,3	0,4	0,8	0,8	1,5	2,3

2 Fluxo de trabalho de sequenciamento

Fabricação de DNB: use o kit de preparação de DNB para fazer DNB

Carregar DNB: coloque os tubos de amostra no sequenciador ou MGIDL-200

Prepare uma nova célula de fluxo: remova a célula de fluxo da embalagem e inspecione para garantir que a célula de fluxo esteja intacta

Prepare um novo cartucho de reagentes: inspecione e descongele o cartucho de

reagente e, em seguida, carregue e misture os reagentes necessários

Carregue a célula de fluxo: coloque a célula de fluxo no estágio do sequenciador

Carregue o cartucho de reagente no sequenciador

Siga as instruções para inserir as informações de sequenciamento e iniciar a

execução

Monitore a execução de sequenciamento a partir da interface do software de

controle

Realize a manutenção do dispositivo quando o sequenciamento for concluído

3 Preparação da biblioteca

3.1 Recomendação do tamanho da inserção

Esse conjunto de sequenciamento é compatível com as bibliotecas preparadas pelos Kits de preparação da biblioteca da MGI.

Recomendação da biblioteca para o tamanho da inserção:

Para SE50, a distribuição de tamanho das inserções é preferida para ser centralizada em torno de 160 a 170 bp. Para PE100, a distribuição de tamanho das inserções é preferida para ser centralizada em torno de 280 bp. Para PE150, a distribuição de tamanho das inserções é preferida para ser centralizada em torno de 400 bp.

3.2 Requisito da biblioteca

Recomendamos a biblioteca ssDNA 40 finol para cada reação. Realize a quantificação da biblioteca ssDNA utilizando o Kit de Ensaio ssDNA Qubit® e o Fluorômetro Qubit®. E a concentração da biblioteca ssDNA é maior que 2 finol/µL. Caso contrário, a quantidade de biblioteca ssDNA necessária é determinada pela seguinte equação. volume necessário (µL)=N*330 * 40 /(1000*1000*C)

N representa o número de nucleotídeos ao redor do pico no gel QC da biblioteca. C representa a concentração da biblioteca ssDNA (ng/µL).

Se houver requisitos especiais para as especificações do kit de biblioteca, então, os requisitos para as especificações do kit serão atendidos.

3.3 Segurança da amostra

Todas as amostras devem ser consideradas para conter agentes potencialmente infecciosos e devem ser manuseadas de acordo com os regulamentos nacionais relevantes.

3.4 Preparar reagentes para a fabricação de DNB

Retire as bibliotecas, o tampão de fabricação de DNB, a mistura I de enzimas de fabricação de DNB, o tampão de TE baixo e o tampão para interromper a reação de DNB do armazenamento. Descongele os reagentes por aproximadamente 0,5 hora no gelo. Após descongelá-los, misture os reagentes usando um misturador de vórtice por 5 segundos, centrifugue brevemente e coloque-os no gelo.

3.5 Fabricação de DNB

A DNB pode ser carregada diretamente pelo sequenciador, mas todas as 4 faixas precisam ser da mesma amostra. Se você precisar carregar várias amostras em 4 faixas diferentes, recomenda-se usar o instrumento MGIDL-200.

3.5.1 Definir o número de reações de fabricação de DNB

Após a reação de fabricação de DNB, 50 μL da reação de fabricação de DNB de 100 μL é carregado em cada faixa na célula de fluxo de sequenciamento. O número necessário de reações de DNB para diferentes sistemas de carregamento está ilustrado na Tabela 3-1:

Carregando faixas em uma célula	O número necessário de reações	
de fluxo	para fabricação de DNB	Carregando o sistema
4	2	Sequenciador
3	2	MGIDL-200
1-2	1	MGIDL-200

Tabela 3-1: O número necessário de reações para fabricação de DNB

3.5.2 Como fazer a DNB

Pegue tiras de 8 tubos de PCR de 0,2 mL ou tubos de PCR. Prepare a mistura de reação seguindo a Tabela 3-2 abaixo.

Tabela 3-2:	Reacão	1 de	fabricação	de	DNB
Inocia e zi	recuçuo :		mornençuo	ue	

Componente	volume (μL)
Bibliotecas ssDNA	v
Tampão de TE baixo	20-V
Tampão de fabricação de DNB	20
Volume total	40

V representa o volume de amostra variável, conforme determinado na seção 3.2. Misture cuidadosamente por vórtice e gire por 5 segundos usando a mini centrífuga. Coloque a mistura em uma máquina de PCR e inicie a reação. As configurações da máquina de PCR estão descritas na Tabela 3-3:

Temperatura	Hora
Tampa aquecida (105 °C)	Ligado
95 °C	1 min
65°C	1 min
40°C	1 min
4°C	Comporta

Tabela 3-3: Condições da reação de DNB 1

Retire a mistura II (LC) da enzima de fabricação de DNB do armazenamento e coloque-a em gelo. Centrifugue brevemente por 5 segundos e mantenha no gelo.

⚠ Observação:

Não coloque a mistura II (LC) da enzima de fabricação de DNB em temperatura ambiente e evite segurar o tubo de forma a aquecer o conteúdo.

Retire o tubo de PCR da máquina de PCR depois que a reação entrar na fase de manutenção a 4 °C. Centrifugue brevemente por 5 segundos, coloque o tubo no gelo e prepare a mistura 2 de reação de fabricação de DNB.

Componente	volume (µL)
Mistura I da enzima de fabricação de DNB	40
Mistura II (LC) da enzima de fabricação de DNB	4

Tabela 3-4: Mistura 2 da reação de fabricação de DNB

Adicione toda a mistura 2 da reação de fabricação de DNB na reação 1 de fabricação de DNB. Misture cuidadosamente por vórtice, centrifugue por 5 segundos usando uma mini centrifuga e coloque os tubos na máquina de PCR para obter a próxima reação. As condições são mostradas na Tabela 3-5 abaixo:

Temperatura	Hora
Tampa aquecida (35°C)	Ligado
30°C	25 min
4°C	Comporta

Tabela 3-5: Condições da reação de DNB 2

Observação:

Recomenda-se ajustar a temperatura da tampa aquecida a 35 °C ou a temperatura mais próxima a 35 °C.

Adicione 20 µL de tampão para interromper a reação de DNB imediatamente após a reação entrar em manutenção a frio a 4 °C. Misture cuidadosamente por pipetagem de orifício largo 5 a 8 vezes. Não provoque um redemoinho ou agite o tubo. Armazene DNB a 4 °C e execute o sequenciamento dentro de 48 horas.

⚠ Observação:

É muito importante misturar cuidadosamente DNB por pipetagem de orifício largo. Não centrifugue, misture por vórtice ou agite o tubo.

3.6 Quantificar DNB

Depois que a fabricação de DNB for concluida, use o Kit de ensaio ssDNA Qubit® e o Fluorômetro Qubit® para quantificar as DNB. O sequenciamento requer que a concentração de DNB esteja acima de 8 ng/µL. Se a concentração for inferior a 8 ng/µL, faça uma nova preparação de DNB. Observação:

Como a DNB é viscosa, recomenda-se usar 2 µL para quantificação. Se o número de amostras for grande, recomenda-se quantificar em lotes para evitar a quantificação imprecisa de DNB devido à têmpera de fluorescência.

Se a concentração exceder 40 ng/μL, a DNB precisará ser diluída a 20 ng/μL com tampão I de carga de DNB para carregamento.

3.7 Carregar DNB

3.7.1 Carregamento de DNB no sequenciador

> Pegue tubos de microcentrífuga de 0,5 mL e adicione reagentes seguindo a tabela 3-6 abaixo.

Componente	volume (µL)
Tampão II de carga de DNB	64
Mistura II (LC) da enzima de fabricação de DNB	2
DNB	200

Tabela 3-6: Mistura 1 de carregamento de DNB

Combine os componentes para criar a mistura 1 de carregamento de DNB e misture cuidadosamente por pipetagem de orifício largo 5 a 8 vezes. Não centrifugue, misture por vórtice ou agite o tubo. Coloque a mistura em 4 °C até a utilização.

Observação:

Prepare uma nova mistura de carregamento de DNB antes da execução de sequenciamento.

3.7.2 Carregamento de DNB MGIDL-200

Pegue uma nova tira de 8 tubos de PCR e adicione reagentes seguindo a Tabela 3-7:

Componente	volume (µL)
Tampão II de carga de DNB	16
Mistura II (LC) da enzima de fabricação de DNB	0,5
DNB	50

Tabela 3-7: Mistura 2 de carregamento de DNB

Combine os componentes para criar a mistura 2 de carregamento de DNB e misture cuidadosamente por pipetagem de orifício largo 5 a 8 vezes. Não centrifugue, misture por vórtice ou agite o tubo.

Depois de criar a mistura 2 de carregamento de DNB, coloque os tubos nas posições rotuladas do MGIDL-200.

Figura 3-1: Coloque as amostras de carregamento

Carregue a célula de fluxo com DNB de acordo com a etapa 6.5 Carregamento da célula de fluxo.
 Observação:

Antes de carregar as DNB, realize uma lavagem conforme descrito no Manual do Usuário do MGIDL-200.

Depois de carregar as DNB, remova a célula de fluxo, coloque-a em temperatura ambiente por 30 minutos e coloque-a imediatamente no estágio do sequenciador para uso.

⚠ Observação:

Não mova a célula de fluxo ao carregar DNB. A célula de fluxo, após ser colocada em temperatura ambiente, deve ser usada imediatamente.

4 Preparar o cartucho de sequenciamento

- Remova o cartucho de reagentes de sequenciamento de -20 °C e descongele em um banho de água em temperatura ambiente até ser descongelado. Armazene os cartuchos entre 2 e 8 °C de armazenamento até o uso (ou descongele os cartuchos em refrigerador entre 2 e 8 °C com um dia de antecedência). Inverta o tubo 3 vezes antes do uso.
- > Abra a tampa do cartucho e limpe qualquer condensação de água com papel sem fiapos.

Figura 4-1: Abra e limpe o cartucho

Remova a mistura de dNTPs e mistura II de dNTPs de armazenamento a -20 °C, 1 hora de antecedência para descongelar em temperatura ambiente e coloque a 4 °C até o uso.

Remova a mistura de enzimas de sequenciamento do armazenamento a -20 °C e coloque a 4 °C até o uso. Observação:

Consulte o nome da mistura de enzimas de sequenciamento para cada comprimento da leitura de sequenciamento no Capítulo "Lista de componentes do conjunto".

Perfure o lacre para fazer um orificio de 1 cm ou menos de diâmetro usando uma ponta estéril no poço nº 1 e nº 2 (ver Figura 4-2):

Figura 4-2: Perfure o selo no cartucho

➢ Poço nº 1 (ver Figura 4-3)

Figura 4-3: Posição do poço

Pegue uma pipeta com o intervalo de volume apropriado e adicione reagentes ao poço nº 1 de acordo com a tabela a seguir:

Kit de sequenciamento	Nome do reagente	Volume de carregamento (mL)
DNBSEQ-G400 FCL SE35	Mistura de dNTPs	0,600
DNBSEQ-G400 FCL SE50	Mistura de dNTPs	0,700
DNBSEQ-G400 FCLSE100	Mistura de dNTPs	1,100
DNBSEQ-G400 FCL PE50	Mistura de dNTPs	1,100
DNBSEQ-G400 FCL PE100	Mistura de dNTPs	1,800
DNBSEQ-G400 FCL PE150	Mistura de dNTPs	2,400

Tabela 4-1: Carregamento da mistura de dNTPs

➢ Poço nº 2 (ver Figura 4-3)

Pegue uma pipeta com o intervalo de volume apropriado e adicione reagentes ao poço nº 2 de acordo com a tabela a seguir:

Kit de sequenciamento	Nome do reagente	Volume de carregamento (mL)
DNBSEQ-G400 FCL SE35	Mistura II de dNTPs	0,500
DNBSEQ-G400 FCL SE50	Mistura II de dNTPs	0,600
DNBSEQ-G400 FCL SE100	Mistura II de dNTPs	0,900
DNBSEQ-G400 FCL PE50	Mistura II de dNTPs	0,900
DNBSEQ-G400 FCL PE100	Mistura II de dNTPs	1,500
DNBSEQ-G400 FCL PE150	Mistura II de dNTPs	2,100

Tabela 4-2: Carregamento da mistura II de dNTPs

➢ Poço nº 1 e nº 2 (ver Figura 4-3)

Pegue uma pipeta com o intervalo de volume apropriado e adicione reagentes ao poço nº 1 e nº 2 de acordo com a tabela a seguir:

Kit de sequenciamento	Nome do reagente	Poço nº 1	Volume do poço
		volume (mL)	n-2 (mL)
DNBSEQ-G400 FCL SE35	Mistura das enzimas de	0,600	0,500
	sequenciamento		
DNRSEO C400 ECL SE50	Mistura das enzimas de	0,700	0,600
DNBSEQ-G400 FCL SE30	sequenciamento		
DNBSEQ-G400 FCL SE100	Mistura das enzimas de	1,100	0,900
	sequenciamento		
DNIBSEO C400 ECL DE50	Mistura das enzimas de	1,100	0,900
DRB3EQ-0400 FCE FE50	sequenciamento		
DNRSEO G400 ECL RE100	Mistura das enzimas de	1,800	1,500
DIABSEQ-0400 FCE FE100	sequenciamento		
DNRSEO G400 ECL RE150	Mistura das enzimas de	2,400	2,100
DNBSEQ-0400 FCL FE150	sequenciamento		

Tabela 4-3: Carregamento da mistura das enzimas de sequenciamento

Lacre o poço de carregamento com o filme de vedação transparente. Não cubra o centro do poço para evitar bloquear a agulha de amostragem.

Figura 4-4: Lacre com o poço de carregamento

Coloque o cartucho horizontalmente sobre a mesa, segure ambos os lados do cartucho com as duas mãos. Mova-o no sentido horário de 10 a 20 vezes e, em seguida, no sentido anti-horário 10 a 20 vezes. Certifique-se de ver o vórtice para garantir que os reagentes estejam totalmente misturados.

Figura 4-5: Reagentes da mistura após o carregamento

Poço nº 15 (ver Figura 4-3): As instruções a seguir são apenas para cartuchos de PE. Adicione 500 μL de mistura de enzimas de MDA ao tubo de reagente de MDA com uma pipeta de 1 mL. Provoque um redemoinho por 5 segundos, misture bem e, em seguida, acrescente a mistura ao poço nº 15. Ao adicionar a mistura, certifique-se de que não haja bolhas na parte inferior do tubo.

⚠ Observação:

Ao usar a mistura de enzimas de MDA, não toque na parede do tubo para evitar influências sobre a atividade enzimática!

5 Preparar uma célula de fluxo

- Remova a célula de fluxo de sequenciamento do armazenamento.
- Desembrulhe a embalagem externa.

Figura 5-1: Desembrulhe a embalagem externa

> Remova a célula de fluxo da embalagem interna e inspecione para garantir que a célula de fluxo esteja intacta.

Figura 5-2: Inspecione a célula de fluxo

6 Sequenciamento

6.1 Acessar a interface principal

Digite o nome de usuário "user" (usuário) e a senha "123", clique em "Log in" (Fazer login) para acessar a interface principal.

	별 23.7°C 🗃 4.7°C 🔒 🗟 문 😂 🧮
A	Status: Idle 🕅 20.2°C 🛞 🗊 B Status: Idle 🚺 25.2°C 🛞 🗊
	C flack User Password Log in Don't enter more than 50 characters
~	
4	

Figura 6-1: Interface de login

> Consulte a interface abaixo.

	E	23.	7°C ₩4.7°C 🔒 🗟 🛃 🔒 🧮
A Status: Idle	01 20.2°C 🛞 🗗	в	Status: Idle 🛛 🗍 25.2°C 🛞 👘
	Vash quence		Vesh
ΩI			

Figura 6-2: Interface principal

6.2 Carregar as DNB

Clique na opção "Sequence" (Sequência) na interface para acessar a seguinte interface:

Figura 6-3: Interface de carregamento de DNB

➢ Clique em ⊕ à direita de "DNB ID" (ID de DNB) e as quatro informações de faixas serão exibidas.

Figura 6-4: Interface de seleção de informações e DNB

- Mova o cursor para a área em branco ao lado de "DNB ID" (ID de DNB) e insira o nome ou o número da biblioteca.
- ➢ Puxe o menu suspenso no lado esquerdo de ⊕ e selecione a sequência do código de barras de diferentes faixas.

Abra a porta do compartimento de reagentes, levante cuidadosamente a agulha de amostragem com uma mão, remova o tubo de reagente de limpeza com a outra mão, carregue o tubo de amostra e, em seguida, abaixe lentamente a ponta da agulha de amostragem até atingir a parte inferior do tubo.

Figura 6-5: Carregue o tubo de DNB

Observação:

Se a DNB for carregada usando o sequenciador, execute esta etapa. Caso contrário, pule esta etapa.

> Feche a porta do compartimento de reagentes.

6.3 Selecionar parâmetros de sequenciamento

Selecione a receita de sequenciamento no menu suspenso "Recipe" (Receita), clique uma vez na execução de sequenciamento (PE150, SE50 etc.) e execução personalizada pelo usuário (Personalizar).

Observação:

```
A solução de sequenciamento "SE50_sR" é para pequeno sequenciamento de RNA.
```


Figura 6-6: Selecione as soluções de sequenciamento

> Se você escolher clicar uma vez no sequenciamento e a DNB for carregada no sequenciador, verifique o "DNB

loading" (Carregamento de DNB) (como a Figura 6-6). Caso contrário, deixe-o em branco e vá para a próxima etapa 6.4. Se você escolher "Customize" (Personalizar), continue executando as seguintes etapas.

No início, selecione uma etapa para iniciar a execução de sequenciamento.

Figura 6-7: Selecione a etapa para iniciar o sequenciamento

> Selecione o comprimento da leitura. Por exemplo, com PE100, insira 100 para leitura 1 e 100 para leitura 2.

Read1:	100	\odot
Read2:	100	\odot

Figura 6-8: Escolha o comprimento da leitura

Selecione o comprimento do código de barras de 6 ou 10. Se for sequenciamento de código de barras duplo, será necessário preencher o comprimento do código de barras duplo. Deixe o código de barras duplo em branco se for uma única execução de sequenciamento de código de barras.

Barcode:	10	~	
Dual barcode:	10	\odot	

Figura 6-9: Selecione o comprimento do código de barras

Selecione a faixa para a demultiplexação do código de barras.

Split barcode: ☑ Lane1 ☑ Lane2 ☑ Lane3 ☑ Lane4
--

Figura 6-10: Demultiplexação do código de barras em faixas diferentes

Selecione a reação escura para qualquer posição de comprimento da leitura na leitura 1 ou 2. Reação escura: somente reação química sem captura óptica das informações

Read1 dark reaction cycle:	2 🕑 - 5	\odot
Read2 dark reaction cycle:	3 🕑 - 8	\odot

Figura 6-11: Selecione a reação escura

Clique em "Confirm" (Confirmar)

6.4 Carregar o cartucho de reagentes

Mova o cursor para o espaço em branco"Reagent ID" (ID do reagente), insira as informações do cartucho manualmente ou use o leitor de código de barras para ler o código de barras do cartucho.

Figura 6-12: Interface de entrada das informações do cartucho de reagentes

> Abra a porta do compartimento de reagentes. Segure a haste do cartucho de limpeza 1 com uma mão, coloque

a outra mão sob o cartucho para suporte e remova-o lentamente do compartimento.

Figura 6-13: Remova o cartucho de limpeza

> Umedeça o papel livre de poeira ou um pano livre de poeira com água de grau laboratorial e use-o para limpar a parte inferior e as laterais do compartimento para mantê-lo limpo e seco.

Figura 6-14: Mantenha o compartimento de reagentes

Segure a haste do cartucho de reagentes com uma mão e coloque a outra mão embaixo para obter suporte. Deslize o novo cartucho para dentro do compartimento seguindo a direção impressa na tampa até que ele pare. Verifique se o cartucho de reagentes está na posição correta e feche a porta do compartimento de reagentes.

Figura 6-15: Deslize o novo cartucho de reagentes no compartimento de reagentes

6.5 Carregar a célula de fluxo

- Abra a porta do compartimento da célula de fluxo, pressione um lado da célula de fluxo usada para lavagem e pressione o botão de anexo da célula de fluxo com a outra mão. Depois que o vácuo for liberado, remova a célula de fluxo para lavagem do estágio.
- Use o removedor de poeira para remover a poeira no estágio da célula de fluxo e na parte de trás da célula de fluxo. Se houver impurezas na superficie do estágio, limpe-a com cuidado com papel úmido livre de poeira para garantir que a célula de fluxo possa ser mantida adequadamente.

Figura 6-16: Limpe o estágio da célula de fluxo

Pressione o botão de anexo da célula de fluxo.

Retire uma nova célula de fluxo ou a célula de fluxo carregada. Há dois orifícios de alinhamento no lado esquerdo e um no lado direito. O rótulo está à direita. Segure a célula de fluxo pelas bordas com as duas mãos.

Figura 6-17: Carregue a célula de fluxo

Alinhe os orificios na célula de fluxo com os pinos de localização no estágio da célula de fluxo. Deslize com cuidado a célula de fluxo em um ângulo de 45° até o canto superior esquerdo (45° até o canto superior direito ao carregar a célula de fluxo no MGIDL-200) para manter a célula de fluxo alinhada com o pino. Pressione os lados esquerdo e direito da célula de fluxo no estágio ao mesmo tempo para garantir que a célula de fluxo esteja corretamente posicionada no estágio.

A Observação:

A célula de fluxo é frágil, tenha cuidado ao manusear a célula de fluxo

- Certifique-se de que a pressão negativa esteja no intervalo de -80 ~ -99 kPa.
- > Use um removedor de poeira para remover a poeira da superfície da célula de fluxo e feche a porta do compartimento da célula de fluxo.

Figura 6-18: Limpe a célula de fluxo

Clique em "Next" (Avançar), o dispositivo vai inserir automaticamente a ID da célula de fluxo; se a entrada automática não funcionar, mova o cursor para o espaço em branco "Flow cell ID" (ID da célula de fluxo) e insira manualmente a ID.

Figura 6-19: Interface de entrada das informações da célula de fluxo

Clique em "Next" (Avançar)

6.6 Revisar os parâmetros

Revise os parâmetros da execução para garantir que todas as informações estejam corretas.

Item	Content
User name	user
DNB ID Lane1	WGS 1~128
DNB ID Lane2	RNA 501~596
DNB ID Lane3	WGS 1~128
DNB ID Lane4	RNA 501~596
Sequencing cartridge ID	AA000012
Flow cell ID	V300001234
Recipe	Customize
Start phase	DNB loading
Cycles	222
Read 1	100
Read 2	100
Dual Barcode	10
Barcode	10
Split barcode	Yes Yes Yes Yes
Read1 dark reaction	2 - 5
Read2 dark reaction	3 - 8

Figura 6-20: Informações da revisão

6.7 Iniciar o sequenciamento

- Depois de confirmar que as informações estão corretas, clique em "Start" (Iniciar).
- O sistema exibirá a caixa de diálogo "Start the sequencing" (Iniciar o sequenciamento). Clique em "Yes" (Sim) para iniciar o sequenciamento.

Figura 6-21: Confirme a interface de sequenciamento

> Uma vez iniciado o sequenciamento, abra imediatamente a porta do compartimento da célula de fluxo para garantir que DNB (ou reagentes) esteja fluindo através da célula de fluxo.

7 Manutenção do dispositivo

7.1 Terminologia e definição

Tipo de lavagem	Descrição
Lavagem completa	Etapa 1 - Lavagem de manutenção, Etapa 2 - Lavagem regular.
	Procedimento: Cartucho de limpeza 4 \rightarrow Cartucho de limpeza 3 \rightarrow Cartucho de
Lavagem de manutenção	limpeza 2
	Para remover reagentes residuais e proteínas da tubulação, reduzindo o risco de
	obstrução.
	Procedimento: Cartucho de limpeza $1 \rightarrow Ar$ fundamental
Lavagem regular	Para remover reagentes residuais, reduzindo o risco de contaminação cruzada.

Tabela 7-1: Solução de lavagem

7.2 Instrução de lavagem

> Quando a interface a seguir for exibida, você poderá realizar uma lavagem.

Figura 7-1: Interface de lavagem

- Após a conclusão do sequenciamento, o dispositivo precisa ser lavado dentro de 24 horas.
- > Uma lavagem completa é necessária se o sequenciador foi usado para A) uma execução de PE ou B) um carregamento/pós-carga de DNB. Uma lavagem regular é suficiente para uma execução de SE.
- Após a conclusão de uma lavagem completa, se o dispositivo ficar ocioso por mais de 12 horas, realize uma lavagem regular novamente antes do uso.
- > Depois que um engenheiro realizar a manutenção do sistema, realize uma lavagem regular.
- Depois de substituir a tubulação, as agulhas de amostragem ou outros acessórios expostos aos reagentes, realize uma lavagem completa.
- Se o sequenciador for ser desligado por mais de 7 dias, realize uma lavagem de manutenção antes de desligar e depois de ligar.
- Se o sequenciador permanecer ocioso por sete dias ou mais, realize uma lavagem completa antes do sequenciamento.
- > Se impurezas forem encontradas na célula de fluxo, realize uma lavagem completa.

7.3 Preparar reagentes de lavagem

Preparar Tween-20 a 0,05% seguindo a tabela abaixo (Pode ser usado por até 28 dias se armazenado a 4 °C)

Reagente	Volume
Tween-20 a 100%	0,5 mL
Água de grau laboratorial	999,5 mL

Tabela 7-2: Preparação dos reagentes de lavagem (1)

Preparar 1M NaCl + Tween-20 a 0,05% seguindo a tabela abaixo (Pode ser usado por até 28 dias se armazenado a 4 °C).

Reagente	Peso/Volume
Solução 5M de NaCl	200 mL
Tween-20 a 100%	0,5 mL
Água de grau laboratorial	799,5 mL

Tabela 7-3: Preparação do reagente de lavagem (2)

Prepare NaOH 0,1 M seguindo a tabela abaixo (válido por 28 dias se armazenado a 4 °C).

Reagente	Peso/Volume
Solução de NaOH 2 M	50 mL
Água de grau laboratorial	950 mL

Tabela 7-4: Preparação do reagente de lavagem (3)

7.4 Cartucho de lavagem

- > Um cartucho de limpeza vazio e a célula de fluxo de lavagem para uma lavagem completa são fornecidos juntamente com o dispositivo.
- Lave o cartucho de limpeza antes de enchê-lo novamente com reagentes de limpeza. Substitua os reagentes de limpeza após 20 usos.
- As células de fluxo usadas de execuções anteriores podem ser usadas como células de fluxo de lavagem. Cada célula de fluxo pode ser usada por até 20 lavagens completas.
- Lave o cartucho de limpeza l: Pegue um cartucho de limpeza limpo e um criotubo de 0,5 mL, adicione água

de grau laboratorial ao criotubo e ao cartucho de limpeza (todos os poços) para um volume final de 90% e marque-o como o cartucho de reagente de limpeza 1.

- Lave o cartucho de limpeza 2: Pegue um cartucho de limpeza limpo e um criotubo de 0,5 mL, adicione água de grau laboratorial ao criotubo e ao cartucho de limpeza (todos os poços) para um volume final de 90% e marque-o como o cartucho de reagente de limpeza 2.
- Lave o cartucho de limpeza 3: Pegue um cartucho de limpeza limpo e um criotubo de 0,5 mL, adicione 50 mL de NaOH 0,1 M nos poços grandes, 6 mL de NaOH 0,1 M nos poços pequenos e 400 µL de NaOH 0,1 M no criotubo de 0,5 mL. Marque-o como o cartucho de reagente de limpeza 3.
- Lave o cartucho de limpeza 4: Pegue um cartucho de limpeza limpo e um criotubo de 0,5 mL, adicione 50 mL de solução Tween-20 a 0,05% nos poços grandes, 6 mL de NaCl 1 M + solução Tween-20 a 0,05% no poço n° 15, 400 μL de NaCl 1 M + solução Tween-20 a 0,05% no criotubo de 0,5 mL e 6 mL de solução Tween-20 a 0,05% nos demais poços. Marque-o como o cartucho de reagente de limpeza 4.

Observação:

Poços grandes são nº 1、2、9、10、17、18 Poços pequenos são nº 3、4、5、6、7、8、11、12、13、14、15、16

7.5 Procedimentos de lavagem

7.5.1 Lavagem regular

- Use o cartucho de limpeza 1. Abra a porta do compartimento de reagentes. Segure a haste do cartucho de limpeza 1 com uma mão e coloque a outra mão embaixo do cartucho 1 para obter suporte. Deslize-o para dentro do compartimento de reagentes lentamente seguindo a direção impressa na tampa do cartucho até que ele pare. Feche a porta do compartimento de reagentes.
- Clique no botão de lavagem na interface.
- Coloque a célula de fluxo para lavagem.
- Selecione lavagem regular no menu suspenso para iniciar a lavagem regular que leva cerca de 50 minutos.
- Se você realizar apenas a lavagem regular, observe o status da célula do fluxo de lavagem nesta etapa. Se você observar muitas bolhas, continue a lavagem. Caso contrário, pare a lavagem, substitua a célula de fluxo e inicie a lavagem. Se você realizar a lavagem regular após a lavagem de manutenção, pule esta etapa.

Wash type:	Regular	~

Figura 7-2: Selecione o tipo de lavagem

Quando a interface é exibida como a figura abaixo, a lavagem regular termina.

Figura 7-3: Interface final da lavagem regular

7.5.2 Lavagem de manutenção

- Use o cartucho de limpeza 4. Abra a porta do compartimento de reagentes. Segure a haste do cartucho de limpeza 4 com uma mão e coloque a outra mão embaixo para obter suporte. Deslize-o no compartimento de reagentes lentamente seguindo a direção impressa na tampa do cartucho até que ele pare. Feche a porta do compartimento de reagentes.
- Clique no botão de lavagem na interface.
- Coloque a célula de fluxo para lavagem.
- Selecione lavagem de manutenção no menu suspenso para iniciar a lavagem de manutenção que leva cerca de 25 minutos.
- > Observe o status da célula de fluxo para lavagem nesta etapa. Se você observar muitas bolhas, continue a lavagem. Caso contrário, pare a lavagem, substitua a célula de fluxo e inicie a lavagem.

- Quando a interface é exibida como na Figura 7-4, clique em "Yes" (Sim) para levantar a agulha e substituir o cartucho de limpeza.
- > Use o cartucho de limpeza 3 e continue a lavagem de manutenção que leva cerca de 25 minutos.

Figura 7-4: Interface final da lavagem de manutenção (1)

- Quando a interface é exibida como na figura 7-5, clique em "Yes" (Sim) para levantar a agulha e substituir o cartucho de limpeza.
- > Use o cartucho de limpeza 2 e continue a lavagem de manutenção que leva cerca de 25 minutos.

Figura 7-5: Interface final da lavagem de manutenção (2)

> Quando a interface aparecer como Figura 7-6, clique em "Não" para encerrar a lavagem de manutenção.

Figura 7-6: Interface final da lavagem de manutenção

7.5.3 Procedimentos de lavagem completa

Etapa 1 - Lavagem de manutenção, Etapa 2 - Lavagem regular. O tempo total é de 2 horas.

8 Solução de problemas

8.1 Baixa concentração de DNB

- > Verifique se o cartucho expirou.
- Verifique se a biblioteca atende aos requisitos.
- Se a concentração de DNB ainda não atender aos requisitos após uma nova preparação da amostra, entre em contato com o engenheiro de serviço em campo.

8.2 Pressão negativa anormal

- Limpe cuidadosamente a superficie do estágio com um papel úmido e sem fiapos ou um pano sem fiapos e sopre o estágio com um removedor de poeira elétrico e verifique se não há mais poeira.
- > Sopre a parte de trás da célula de fluxo com um removedor de poeira para garantir que não haja poeira.
- > Se essas soluções não puderem resolver o problema, entre em contato com o engenheiro.

8.3 Bolhas

- Substitua a célula de fluxo usada e inspecione a bomba.
- Se o problema persistir, entre em contato com o engenheiro.

8.4 Impurezas

- > Realize uma lavagem completa no MGIDL-200 e no sequenciador.
- > Se o problema persistir após uma lavagem completa, entre em contato com o engenheiro.

8.5 Falhas na bomba

- > MGIDL-200 e o sequenciador: remova a célula de fluxo, verifique se há impurezas na vedação e remova a poeira com o removedor de poeira. Coloque a célula de fluxo seguindo a instrução e ligue a bomba novamente.
- > Verifique se a célula de fluxo de sequenciamento se move corretamente.
- > Se as agulhas de amostragem não se moverem corretamente, reinicie o software de sequenciamento.
- > Se o problema persistir, entre em contato com o engenheiro.

8.6 Armazenamento do cartucho de reagentes

- Se o cartucho tiver sido descongelado (incluindo dNTPs) e não puder ser usado dentro de 24 horas, ele poderá ser congelado e descongelado no máximo uma vez.
- Se o cartucho tiver sido descongelado (incluindo dNTPs), mas não puder ser usado imediatamente, armazeneo a 4 °C e use-o dentro de 24 horas.
- Se dNTPs e enzima tiverem sido adicionados ao cartucho, o kit foi preparado, mas não pode ser usado imediatamente, armazene-o a 4 °C e use-o dentro de 24 horas.
- Se dNTPs e enzima tiverem sido adicionados ao kit, o cartucho foi preparado e as agulhas do cartucho começaram a aspiração, mas o cartucho não pode ser usado a tempo, o cartucho deve ser lacrado com papel alumínio ou filme plástico. Armazene o cartucho a 4 °C e use-o dentro de 24 horas.

8.7 Falha pós-carregamento

- Se o pós-carregamento falhar, mas a etapa principal tiver sido realizada, nessa condição, reinicie a partir do pós-carregamento.
- > Comece pelo capítulo 6 "Sequenciamento" e recarregue a célula de fluxo.
- > Ao selecionar 6.3 parâmetros de sequenciamento, escolha "Customize" (Personalizar) o programa.
- Selecione "Post loading" (Pós-carregamento) e clique em "...".

Figura 8-1: Selecione reiniciar pós-carregamento

- Se iniciar a partir do pós-carregamento principal, selecione "Prime" conforme a Figura 8-1, caso contrário, se iniciar a partir da etapa de pós-carregamento, não selecione "Prime".
- > Outras etapas seguem o capítulo 6 "Sequenciamento" neste manual.

Equipamentos e consumíveis	Marca recomendada	Número de catálogo
Fluorômetro Qubit® 3.0	Thermofisher	Q33216
	Principal Fornecedor do	1
Minicentrifuga	Laboratório (MLS)	1
Misturador de vórtice	MLS	/
Máquina de PCR	Bio-Rad	/
Pipeta	Eppendorf	1
Refrigerador 2 °C~8 °C	MLS	1
Freezer -25 °C~-15 °C	MLS	1
Kit de ensaio ssDNA Qubit®	Thermo Fisher	Q10212
Removedor de poeira elétrico	MATIN	M-6318
Ponteira da pipeta estéril (caixa)	AXYGEN	/
Ponteiras de pipeta de orifício		T 205 UD G
largo de 200 µL	AAYGEN	1-205-WB-C
Tubos de ensaio Qubit	Thermo Fisher	Q32856
Tween-20 a 100%	MLS	/
Solução 5M de NaCl	MLS	/
Solução de NaOH 2 M	MLS	/
Tira de 8 tubos de PCR de	AVACEN	/
0,2 mL	AATGEN	
1,5 mL Eppendorf	AXYGEN	MCT-150-C
Rack de gelo	MLS	/

9 Equipamentos e consumíveis necessários, mas não fornecidos

Tabela 9-1: Equipamentos e consumíveis necessários, mas não fornecidos

10 Lista de componentes do conjunto

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento	1	RT (0 °C~30 °C)
		Tampão de TE baixo	300 µL×1 tubo	
		Tampão de fabricação de DNB	100 µL×1 tubo	
		Mistura I da enzima de fabricação de DNB	$200 \; \mu L{\times}1 \; tubo$	
DNBSEQ-G400 Conjunto de		Mistura II (LC) da enzima de fabricação de DNB	$25\mu L \times 1$ tubo	
alto rendimento		Tampão para interromper a reação de DNB	100 $\mu L{\times}1$ tubo	
(FCL SE35)	(FCL SE35) Pacote II	Tampão I de carga de DNB	200 µL×1 tubo	-25 °C~-15 °C
Número de		Tampão II de carga de DNB	200 µL×1 tubo	
catalogo:		Microtubo de 0,5 mL (Vazio)	1 tubo	
1000018577		Mistura de dNTPs	0,70 mL× 1 tubo	
		Mistura II de dNTPs	0,60 mL×1 tubo	
	Mistura das e Cartu	Mistura das enzimas de sequenciamento	1,40 mL×1 tubo	
		Cartucho de reagentes de	1	
		sequenciamento	-	
		filme de vedação transparente	2 folhas.	

Tabela10-1: Lista de componentes do conjunto 1

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento	1	RT (0 °C~30 °C)
		Tampao de LE baixo	300 µL×1 tubo	
		Tampão de fabricação de DNB	100 μL×1 tubo	
		Mistura I da enzima de fabricação de DNB	$200 \; \mu L{\times}1 \; tubo$	
DNBSEQ-G400		Mistura II (LC) da enzima de fabricação		
Conjunto de		de DNB	25 μL×1 tubo	
sequenciamento de		Tampão para interromper a reação de		
alto rendimento	Pacote II	DNB	100 µL×1 tubo	
(FCL SE50)		Tampão I de carga de DNB	200 µL×1 tubo	-25 °C~-15 °C
Número de		Tampão II de carga de DNB	200 µL×1 tubo	
catálogo:		Microtubo de 0,5 mL (Vazio)	1 tubo	
1000018578		Mistura de dNTPs	0,80 mL×1 tubo	
		Mistura II de dNTPs	0,70 mL×1 tubo	
	Mistura das	Mistura das enzimas de sequenciamento	1,60 mL×1 tubo	
		Cartucho de reagentes de		
		sequenciamento	1	
		filme de vedação transparente	2 folhas.	

Tabela10-2: Lista de componentes do conjunto 2

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento Tampão de TE baixo	1 300 μL×1 tubo	RT (0 °C~30 °C)
		Tampão de fabricação de DNB	100 μL×1 tubo	
		Mistura I da enzima de fabricação de DNB	200 µL×1 tubo	
DNBSEQ-G400 Conjunto de	DNBSEQ-G400 Conjunto de sequenciamento de alto rendimento (FCL SE100) Número de Pacote II	Mistura II (LC) da enzima de fabricação de DNB	$25 \ \mu L{\times}1 \ tubo$	
alto rendimento		Tampão para interromper a reação de DNB	100 $\mu L{\times}1$ tubo	
(FCL SE100)		Tampão I de carga de DNB	$200 \ \mu L \times 1 \ tubo$	-25 °C~-15 °C
Numero de		Tampão II de carga de DNB	$200 \; \mu L{\times}1 \; tubo$	
catalogo.		Microtubo de 0,5 mL (Vazio)	1 tubo	
1000018579		Mistura de dNTPs	1,20 mL×1 tubo	
		Mistura II de dNTPs	1,00 mL×1 tubo	
		Mistura das enzimas de sequenciamento	2,30 mL×1 tubo	
		Cartucho de reagentes de	1	
		sequenciamento	1	
		filme de vedação transparente	2 folhas.	

Tabela10-3: Lista de componentes do conjunto 3

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento	1	RT (0 °C~30 °C)
		Tampão de TE baixo	$300 \ \mu L \times 1 \ tubo$	
		Tampão de fabricação de DNB	100 μ L×1 tubo	
		Mistura I da enzima de fabricação de DNB	200 $\mu L{\times}1$ tubo	
DNBSEQ-G400		Mistura II (LC) da enzima de fabricação de DNB	$25\mu L \times 1$ tubo	
Conjunto de sequenciamento de		Tampão para interromper a reação de DNB	100 $\mu L{\times}1$ tubo	
(FCL PE50)		Tampão I de carga de DNB 200 μL×1 tubo Tampão II de carga de DNB 200 μL×1 tubo Microtubo de 0,5 mL (Vazio) 1 tubo	$200 \; \mu L{\times}1 \; tubo$	
	Pacote II		-25 °C~-15 °C	
Numero de			1 tubo	
catalogo.		Mistura de dNTPs	1,20 mL×1 tubo	
1000018580		Mistura II de dNTPs	1,00 mL×1 tubo	
		Mistura das enzimas de sequenciamento	2,30 mL×1 tubo	
		Reagente MDA	3,50 mL×1 tubo	
		Mistura das enzimas de MDA	0,60 mL×1 tubo	
		Cartucho de reagentes de sequenciamento	1	
		filme de vedação transparente	2 folhas.	

Tabela10-4: Lista de componentes do conjunto 4

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento	1	RT (0 °C~30 °C)
		Tampão de TE baixo	300 µL×1 tubo	
		Tampão de fabricação de DNB	100 µL×1 tubo	
		Mistura I da enzima de fabricação de DNB	200 $\mu L{\times}1$ tubo	
DNBSEQ-G400		Mistura II (LC) da enzima de fabricação de DNB	$25\mu L \times 1$ tubo	
Conjunto de sequenciamento de		Tampão para interromper a reação de DNB	100 $\mu L{\times}1$ tubo	
(FCL PE100)		Tampão I de carga de DNB 200 μL×1 tubo Tampão II de carga de DNB 200 μL×1 tubo Microtubo de 0,5 mL (Vazio) 1 tubo	$200 \; \mu L{\times}1 \; tubo$	
	Pacote II		$200 \ \mu L \times 1 \ tubo$	-25 °C~-15 °C
Numero de			1 tubo	
catalogo:		Mistura de dNTPs	1,90 mL×1 tubo	
1000018581		Mistura II de dNTPs	1,60 mL×1 tubo	
		Mistura das enzimas de sequenciamento	3,60 mL×1 tubo	
		Reagente MDA	3,50 mL×1 tubo	
		Mistura das enzimas de MDA	0,60 mL×1 tubo	
		Cartucho de reagentes de sequenciamento	1	
		- filme de vedação transparente	2 folhas.	

Tabela10-5: Lista de componentes do conjunto 5

Produto	Kit de sequenciame nto	Componente	Especificação e quantidade	Temperatura de armazenamento
	Pacote I	DNBSEQ-G400 Célula de fluxo de sequenciamento	1	RT (0 °C~30 °C)
		Tampão de TE baixo	$300 \ \mu L \times 1 \ tubo$	
		Tampão de fabricação de DNB	$100 \ \mu L \times 1 \ tubo$	
		Mistura I da enzima de fabricação de DNB	200 $\mu L{\times}1$ tubo	
DNBSEQ-G400	G400 de nto de	Mistura II (LC) da enzima de fabricação de DNB	25 $\mu L{\times}1$ tubo	
Conjunto de sequenciamento de		Tampão para interromper a reação de DNB	100 $\mu L{\times}1$ tubo	
(FCL PE150)		Tampão I de carga de DNB200 μL×1 tuboTampão II de carga de DNB200 μL×1 tubo	$200 \; \mu L{\times}1 \; tubo$	
	Pacote II		-25 °C~-15 °C	
Numero de		Microtubo de 0,5 mL (Vazio)	1 tubo	
catalogo.		Mistura de dNTPs	1,30 mL×2 tubo	
1000018582		Mistura II de dNTPs	1,15 mL×2 tubo	
		Mistura das enzimas de sequenciamento	4,80 mL×1 tubo	
		Reagente MDA	3,50 mL×1 tubo	
		Mistura das enzimas de MDA	0,60 mL×1 tubo	
		Cartucho de reagentes de sequenciamento	1	
		filme de vedação transparente	2 folhas.	

Tabela10-6: Lista de componentes do conjunto 6

11 Interpretação dos resultados dos testes

11.1 As seguintes condições podem comprometer os resultados da sequenciamento:

- > Armazenamento prolongado das amostras de DNB
- Contaminação da amostra
- Diferença na proporção da mistura de bibliotecas contendo diferentes códigos de barras moleculares

11.2 Outros fatores que podem comprometer os resultados incluem: uso de um kit de reagentes expirado, baixa precisão de pipetas, alta temperatura ambiente e não cumprimento das instruções.

12 Especificação de desempenho do produto

12.1 Precisão

Quando os testes são realizados no produto de referência Q, a taxa de coincidência entre os resultados de sequenciamento e a sequência de referência conhecida deve ser superior a 99%.

12.2 Repetibilidade

Repita os testes no produto de referência Q 5 vezes, o valor CV da taxa de coincidência entre os resultados de sequenciamento e a sequência de referência conhecida não deve ser superior a 5% (n=5).

12.3 Variações de lote

Quando os testes forem realizados no produto de referência Q, use os kits de sequenciamento de três lotes diferentes e repita os testes 5 vezes, respectivamente. O valor CV da taxa de coincidência entre os resultados de sequenciamento e a sequência de referência conhecida não deve ser superior a 5% (n=15).

13 Precauções

13.1 Somente para uso diagnóstico in vitro.

- 13.2 Leia este manual cuidadosamente antes de usar e certifique-se de compreender e sofisticar a operação do dispositivo e estar totalmente ciente das precauções antes de iniciar o ensaio.
- 13.3 Todas as amostras e reagentes devem ser evitados do contato direto com a pele e os olhos, e proibidos de engolir. Quando isso acontecer, lave imediatamente com bastante água limpa e vá para o hospital para tratamento o mais rápido possível.

13.4 Todas as amostras e vários resíduos são considerados como tendo potencial contaminação e devem ser tratados como poluentes.

14 Referências da literatura

14.1

Dean, F. B. et al. Comprehensive human genome amplification using multipledisplacement amplification.Proc. Natl A cad. Sci. USA. 99, 5261–5266 (2002).

14,2

Peters, B.A., et al., Accurate whole genome sequencing and haplotyping from-10 to 20 human cells. Nature 487,190-195(2012).

14,3

Drmanac, R. Nucleic acid analysis by random mixtures of non-overlapping fragments. US patent 7,901 891 (2006).

14,4

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).

14,5

Drmanac, R. et al. Human genome sequencing using unchained base reads on self- assembling DNA nanoarrays. Science 327, 78-81 (2010).

15Detalhes de contato

Fabricante: Wuhan MGI Tech Co.,Ltd

Endereço Fabricante: Building 24, Stage 3.1, BioLake Accelerator, No.388, 2nd Gaoxin Road, East Lake High-Tech Development Zone, 430075, Wuhan, China

Entre em contato com: Latvia MGI Tech, SIA

Linha direta do serviço: 4000-966-988 Site: en.mgitech.cn

16 Edição de idioma

Para os requisitos de Instruções de uso em outros idiomas, entre em contato com a Latvia MGI Tech, SIA

17 Data da versão do manual do usuário

Este manual foi lançado em outubro de 2018.

18 Legenda dos símbolos usados

IVD	DISPOSITIVO MÉDICO PARA DIAGNÓSTICO IN VITRO
***	FABRICANTE
\sum	USAR ATÉ
LOT	CÓDIGO DO LOTE
REF	NÚMERO DE CATÁLOGO
SN	NÚMERO DE SÉRIE
\triangle	CUIDADO
-25°C	LIMITE DE TEMPERATURA

MARCA CE

CONSULTE AS INSTRUÇÕES DE USO

MANTER PROTEGIDO DA LUZ SOLAR

MANTER SECO

NÃO REUTILIZE

CONTEÚDO SUFICIENTE PARA N TESTES

MGI WeChat

Informações para contato

Wuhan MGI Tech Co.,Ltd Endereço Fabricante: Prédio 24, Estágio 3.1, BioLake Accelerator, N.º 388 2nd GaoXin Road, East Lake High-Tech Zona de Desenvolvimento, 430075 Wuhan, China E-mail: MGI-service@genomies.cn Website: en.mgitech.cn

