High-throughput Sequencing Set

User Manual

For use with: MGISEQ-200	Version A0
--------------------------	------------

Wuhan MGI Tech Co., Ltd.

High-throughput Sequencing Set

[Product Name]

High-throughput Sequencing Set

[Pack Size]

Applicable model	PN	Applicable model	Specification
	1000017806	MGISEQ-200	SE25 avalas/tast 1 tast/sat
	1000017800	SE35	SE35 cycles/test, 1 test/set
	1000017907	MGISEQ-200	SE50 avalas/test 1 test/set
Genetic Sequencer (MGISEQ-200)	1000017807	SE50	SE50 cycles/test, 1 test/set
	1000017909	MGISEQ-200	SE100 avalas/test 1 test/set
	1000017808	SE100	SE100 cycles/test, 1 test/set
	1000017809	MGISEQ-200	
		PE50	PE50 cycles/test, 1 test/set
	1000017010	MGISEQ-200	
	1000017810	PE100	PE100 cycles/test, 1 test/set

[Intended Use]

The sequencing set is a set of commonly used reagents for detecting the human genomic DNA libraries. It is used with the Genetic Sequencer to perform high-throughput sequencing and obtain sample sequence information. It provides universal reagents for the sequencing reaction system. The product is not intended for well genome sequencing.

[Test Principle]

With the Combinatorial Probe-Anchor Synthesis (cPAS) technology, the sequencing set is to determine the base sequence carried by a DNA Nanoball (DNB) loaded on a sequencing flow cell. The test procedure is mainly divided into three parts, namely DNB preparation, DNB loading and sequencing. Specifically, the DNA libraries are cyclized using the reagents provided in the sequencing set, and then DNB is prepared by rolling circle amplification and loaded onto the sequencing flow cell. During the sequencing process, specially modified bases at the end are labeled as different fluorescent probes, DNA molecular anchors and fluorescent probes are incorporated on the nanoballs, the high-resolution imaging system collects the optical signals, and then the sequence to be tested can be obtained after the optical signals are digitized.

[Main Components]

See the table below.

		tain Components of sequencing se		leneing	
Package	Component	Main ingredients	SE35 Spec	SE50 Spec	SE100 Spec
Тискиде	name		& Quantity	& Quantity	& Quantity
Package 1	Sequencing flow cell (MGISEQ-200)	Silicon slide	1 EA	1 EA	1 EA
	Cyclization Buffer	Magnesium acetate, potassium acetate, dithiothreitol, Tris(hydroxymethyl)aminomethane, and oligonucleotide	$110 \mu L \times 1$	$110 \mu L \times 1$	110 µL × 1
	Ligase	DNA ligase	$5 \ \mu L \times 1$	$5 \ \mu L \times 1$	$5 \ \mu L \times 1$
	Low TE buffer	Tris(hydroxymethyl)aminomethane, hydrochloric acid, and ethylenediaminetetraacetic acid	100 µL × 1	$100 \mu\text{L} \times 1$	100 µL × 1
Package 2	Make DNB Buffer	Ammonium sulfate, dithiothreitol, magnesium chloride, tris(hydroxymethyl)aminomethane, and oligonucleotide	$50 \mu L \times 1$	50 μL × 1	50 μL × 1
	Make DNB Enzyme Mix I	Deoxyribonucleoside triphosphate (dNTP), ammonium sulfate, dithiothreitol, magnesium chloride, tris(hydroxymethyl)aminomethane, glycerol, and SSB	$100 \mu L imes 1$	$100 \ \mu L \times 1$	100 µL × 1
	Make DNB Enzyme Mix II (LC)	Tris(hydroxymethyl)aminomethane, potassium chloride, ethylenediaminetetraacetic acid, DNB polymerase, and glycerol	13 μL × 1	13 µL × 1	13 µL × 1
	Stop DNB Reaction Buffer	Ethylenediaminetetraacetic acid, and molecular grade water	$50 \mu L imes 1$	$50 \mu L imes 1$	$50 \mu L imes 1$
	DNB Load Buffer I	Disodium hydrogen phosphate, and molecular grade water	$300 \ \mu L \times 1$	$300 \ \mu L \times 1$	$300 \ \mu L \times 1$
	DNB Load Buffer II	Potassium citrate, and citric acid	$120 \ \mu L \times 1$	$120 \ \mu L \times 1$	$120 \mu L \times 1$
	dNTPs Mix III	Tris(hydroxymethyl)aminomethane, hydrochloric acid, ethylenediaminetetraacetic acid, and chemically modified dNTPs	0.40 mL × 1	0.50 mL × 1	0.60 mL × 1
	dNTPs Mix II	Tris(hydroxymethyl)aminomethane, hydrochloric acid, ethylenediaminetetraacetic acid, and chemically modified dNTPs	0.70 mL × 1	0.90 mL × 1	1.10 mL × 1

Table 1 Main Components of sequencing set for SE Sequencing

Package	Component name	Main ingredients	SE35 Spec & Quantity	SE50 Spec & Quantity	SE100 Spec & Quantity
	Sequencing Enzyme Mix	DNA polymerase and glycerol	0.90 mL × 1	1.10 mL × 1	1.30 mL × 1
	Sequencing Reagent Cartridge (MGISEQ-200)	Tris(hydroxymethyl)aminomethane, sodium chloride, ethylenediaminetetraacetic acid, magnesium sulfate, Tween 20, hydrochloric acid, dideoxynucleoside triphosphate, sodium citrate, oligonucleotide, DNA polymerase, glycerol, and potassium chloride	SE35 × 1	SE50 × 1	SE100 × 1
	Micro Tube 0.5mL(Empty)	PP plastic	1	1	1
	Transparent sealing film	PP plastic	2	2	2

Package	Component	Main ingredients	PE50 Spec & Quantity	PE100 Spec
1 wonago	name	name		& Quantity
Package 1	Sequencing flow cell (MGISEQ-200)	Silicon slide	1	1
	Cyclization Buffer	Magnesium acetate, potassium acetate, dithiothreitol, Tris(hydroxymethyl)aminomethane, and oligonucleotide	$110 \mu L \times 1$	$110 \mu L \times 1$
	Ligase	DNA ligase	$5 \ \mu L \times 1$	$5 \mu L imes 1$
	Low TE buffer	Tris(hydroxymethyl)aminomethane, hydrochloric acid, and ethylenediaminetetraacetic acid	$100 \ \mu L \times 1$	$100 \ \mu L imes 1$
	Make DNB Buffer	Ammonium sulfate, dithiothreitol, magnesium chloride, tris(hydroxymethyl)aminomethane, and oligonucleotide	$50 \mu L \times 1$	50 μL × 1
Package 2	Make DNB Enzyme Mix I	Deoxyribonucleoside triphosphate (dNTP), ammonium sulfate, dithiothreitol, magnesium chloride, tris(hydroxymethyl)aminomethane, glycerol, and SSB	$100 \ \mu L \times 1$	$100 \ \mu L \times 1$
	Make DNB Enzyme Mix II (LC)	Tris(hydroxymethyl)aminomethane, potassium chloride, ethylenediaminetetraacetic acid, DNB polymerase, and glycerol	13 µL × 1	13 µL × 1
	Stop DNB Reaction Buffer	Ethylenediaminetetraacetic acid, and molecular grade water	$50 \ \mu L imes 1$	$50 \mu L imes 1$
	DNB Load Buffer I	Disodium hydrogen phosphate, and molecular grade water	$300 \ \mu L \times 1$	$300 \ \mu L \times 1$
	DNB Load Buffer II	Potassium citrate, and citric acid	$120~\mu L \times 1$	$120~\mu L \times 1$
	dNTPs Mix III	Tris(hydroxymethyl)aminomethane, hydrochloric acid, ethylenediaminetetraacetic acid, and chemically modified dNTPs	0.60 mL × 1	0.90 mL × 1
	dNTPs Mix II	Tris(hydroxymethyl)aminomethane, hydrochloric acid, ethylenediaminetetraacetic acid, and chemically modified dNTPs	1.10 mL × 1	1.70 mL × 1
	Sequencing Enzyme Mix	DNA polymerase, glycerol	1.30 mL × 1	1.90 mL × 1
	MDA Enzyme Mix	MDA polymerase, glycerol	0.30 mL × 1	0.30 mL × 1

Table 2 Main Components of sequencing set for PE Sequencing

Package	Component name	Main ingredients	PE50 Spec & Quantity	PE100 Spec & Quantity
	MDA reagent	Deoxyribonucleoside triphosphate, dithiothreitol, dimethyl sulfoxide, and sucrose	1.40 mL × 1	1.40 mL × 1
	Sequencing Reagent Cartridge (MGISEQ-200)	Tris(hydroxymethyl)aminomethane, sodium chloride, ethylenediaminetetraacetic acid, magnesium sulfate, Tween 20, hydrochloric acid, dideoxynucleoside triphosphate, sodium citrate, oligonucleotide, DNA polymerase, Glycerin and potassium chloride,	PE50 ×1	PE100 × 1
	Micro Tube 0.5mL (Empty)	PP plastic	1	1
	Transparent sealing film	PP plastic	2	2

Note: Mixed use of reagent components from different batches is strictly prohibited. Each sequencing set can be used only once.

Main equipment and materials required but not provided:

Equipment: Qubit[®] fluorometer, mini centrifuge, vortex mixer, PCR machine, pipettes of various types.

Materials: Qubit[®] ssDNA Assay Kit, tip with filter, 100 μ L wide bore tip, 0.2 mL PCR tube, 0.5 mL cryotube, 1.5/2.0 mL centrifuge tube and ice box.

[Storage conditions and shelf life]

Package 1 of the sequencing set is stored at room temperature (0-30 $^{\circ}$ C), and package 2 is stored at -25 $^{\circ}$ C - -15 $^{\circ}$ C. both packages are valid for 8 months. See their labels for manufacturing date, and expiration date.

[Applicable instrument]

Genetic Sequencer (MGISEQ-200)

[Sample requirements]

1. Sample requirements: The total library requirement is ≥ 1 pmol, and the library volume is ≤ 48 µL.

2. Sample safety: All samples should be considered potentially infectious and should be handled in accordance with relevant national regulations.

[Test methods]

1. Cyclization reaction

1.1 Prepare reagent for cyclization reaction

Remove the Cyclization Buffer and ligase from storage and place them on an ice box. After thawing, mix reagents using a vortex mixer for 5 seconds. Centrifuge briefly and place them on ice until use.

 \triangle Note: Do not place ligase at room temperature and avoid holding the tube for a prolonged time.

1.2 According to the quantitative results of the DNA libraries, pool the libraries to be tested in a new 0.2mL PCR tube according to the barcode adaptor numbers, and then add about 1 pmol pooled DNA library (The actual volume can be taken according to the recommended volume of the kit. See formula 1 for conversion between pmol and ng) to a 0.2 mL tube according to the following system.

(Note: If the volume of the pooled library is greater than 48 μ L, please prepare a new library).

1 pmol PCR product mass (ng) =
$$\frac{\text{Main-band DNA fragment (bp)}}{1000 \text{ bp}} \times 660 \text{ ng}$$

Formula 1 Conversion between pmol and ng of PCR product

Component	Volume (µL)
Pooled DNA library	V
Low TE buffer	48-V

Table 3 Cyclization Reaction System 1

1.3 Mix the reaction system with a vortex mixer, centrifuge it for 5s in a mini centrifuge, incubate the PCR tube on a PCR machine at 95 $^{\circ}$ C for 5 min. Immediately take the tube out after incubation and place it on ice for 2 min.

1.4 Add the following components to the above reaction system. Fully mix the reaction mixture by vortexing and briefly centrifuge using a mini centrifuge. Incubate the reaction mixture at 37 $^{\circ}$ C for 30 min. The reaction product may go to the next reaction step or be placed in a refrigerator at -20 $^{\circ}$ C for storage.

Component	Volume (µL)
Cyclization Buffer	11.6
Ligase	0.5

2. Make DNB

2.1 Prepare reagents for DNB making

Remove the Low TE buffer, Make DNB Buffer, Make DNB Enzyme Mix I, Make DNB Enzyme Mix II (LC) and Stop DNB Reaction Buffer from storage and place them on an ice box. After thawing, mix reagents using a vortex mixer for 5 seconds. Centrifuge briefly and place them on ice until use.

Note: Do not place the Make DNB Enzyme Mix II (LC) at room temperature and avoid holding the tube for a prolonged time.

2.2 Make DNB

2.2.1 Add the following components into a new 0.2 mL PCR tube:

Component	Volume (µL)
DNA library	20
Make DNB Buffer	20

Table 5 Make DNB Reaction 1

2.2.2 Mix gently by vortexing and centrifuge for 5 seconds using a mini centrifuge. Place the mix into a PCR machine and start the reaction. PCR machine settings are described in Table 6:

Time
On
1 min
1 min
1 min
Hold

 Table 6 DNB Reaction Condition 1

2.2.3 Take the PCR tube out of the PCR machine when the temperature reaches 4° C. Centrifuge briefly for 5 s, place the tube on ice and add the following components:

Table 7	Make	DNB	Reaction 2	
---------	------	-----	------------	--

Component	Volume (µL)
Make DNB Enzyme Mix I	40
Make DNB Enzyme Mix II (LC)	4

2.2.4 Mix gently by vortexing, centrifuge for 5 s using a mini centrifuge and place the tubes into the PCR machine for the next reaction. The conditions are shown in Table 8:

Temperature	Added volume (µL)
Heated lid (35 °C)	On
30°C	25 min
4°C	Hold

Table 8 DNB Reaction Condition 2

2.2.5 Add 20 μ L Stop DNB Reaction Buffer immediately after the reaction enters cold hold at 4°C. Mix Gently using a wide bore pipette tip 5-8 times. Do not vortex or shake the tube. Store DNBs at 4°C and perform sequencing within 48 hours.

 $\underline{\wedge}$ Note: It is very important to mix DNB gently using a wide bore pipette tip. Do not centrifuge, vortex, or shake the tube.

2.2.6 Quantify DNB: Take 2 μ L of the product in 2.2.5 and use Qubit® ssDNA Assay Kit and Qubit® Fluorometer to quantify the DNB. Sequencing requires a minimum DNB concentration of 8 ng/ μ L. If the concentration is lower than 8 ng/ μ L, make a new DNB preparation. If the concentration exceeds 40 ng/ μ L, the DNB should be diluted to 20 ng/ μ L with DNB Load Buffer I before loading. Store DNBs at 4°C before use.

3. Sequencing

3.1 Prepare reagents for DNB loading

Transfer 100 μ L qualified DNB , 50 μ L DNB Load Buffer I and 50 μ L DNB Load Buffer II to a new 0.5 mL cryotube, then add 1 μ L Make DNB Enzyme Mix II (LC) into the cryotube. Mix by gently pipetting 5-8 times using a wide bore tip (Do not centrifuge, vortex, or shake the tube). Prepare a fresh DNB loading mix before the sequencing run. 3.2 Sequencing reagent preparation

3.2.1 Remove the sequencing reagent cartridge, dNTPs Mix III and dNTPs Mix II from storage and thaw them at room temperature. When the reagents are completed thawed, immediately place them in the refrigerator at 4 $^{\circ}$ C for use.

3.2.2 Take out the Sequencing Enzyme Mix and store at 4 °C before use.

3.2.3 Pierce the seal at the edge of well No.1 and No.2 to make a hole roughly 1 cm in diameter using 1 mL sterile tip.

3.2.4 Take a pipette with the appropriate volume range and add reagents to well No.1 according to the following table:

Product model	Reagent name	Loading volume (mL)		
MGISEQ-200 SE35	dNTPs Mix III	0.300		
MGISEQ-200 SE50	dNTPs Mix III	0.400		
MGISEQ-200 SE100	dNTPs Mix III	0.500		
MGISEQ-200 PE50	dNTPs Mix III	0.500		
MGISEQ-200 PE100	dNTPs Mix III	0.800		

Table 9 dNTPs Mix III Loading

3.2.5 Take a pipette with the appropriate volume range and add reagents to well No.1 according to the following table:

Table 10 dNTPs Mix II Loading

Product model Rea	Reagent name	Loading volume
	8	(mL)
MGISEQ-200 SE35	dNTPs Mix II	0.600
MGISEQ-200 SE50	dNTPs Mix II	0.800
MGISEQ-200 SE100	dNTPs Mix II	1.000
MGISEQ-200 PE50	dNTPs Mix II	1.000
MGISEQ-200 PE100	dNTPs Mix II	1.600

3.2.6 Take a pipette with the appropriate volume range and add reagents to well No.1 and No.2 respectively according to the following table:

D aggant name	Loading volume
Reagent name	(mL)
Sequencing Enzyme Mix	0.300
Sequencing Enzyme Mix	0.400
Sequencing Enzyme Mix	0.500
Sequencing Enzyme Mix	0.500
Sequencing Enzyme Mix	0.800
	Sequencing Enzyme Mix Sequencing Enzyme Mix Sequencing Enzyme Mix

Table 11 Sequencing Enzyme Mix Loading

3.2.7 Seal the loading wells of well No.1 and No.2 with the transparent sealing film. Do not cover the center of the well to avoid blocking the sampling needle.

3.2.8 Place the cartridge horizontally on the table, hold both sides of the cartridge with both hands, and move it clockwise 10-20 times, then counterclockwise 10-20 times. Make sure that you see the vortex to ensure reagents are fully mixed.

3.2.9 Well No.15:

Note: The following instruction are only for PE sequencing!

Add 200 μ L of MDA Enzyme Mix to the MDA Reagent tube with a 1 mL pipette. Invert the tube 4-6 times to mix the reagents thoroughly, then add the mixture to well No.15. When adding the mixture, make sure there are no bubbles at the bottom of the tube.

3.3 Sequencing

Start the Genetic Sequencer, load the DNB tube, sequencing flow cell and sequencing reagent cartridge, and run the sequencing program with reference to the User Manual of Genetic Sequencer (MGISEQ-200).

4. Data analysis

When sequencing is completed, the program will generate a standard sequence file.

[Explanation of test results]

1. The sequencing is highly sensitive. The following conditions may affect the test results, and the effects should be precluded before testing.

- a) Samples have been placed for too long.
- b) Samples are contaminated with other nucleic acids.
- c) Sample fragments are not uniform in size.

2. In addition, some operational errors may result in unsatisfactory test results, e.g. the sequencing set exceeds the expiration date, the pipette and loader are inaccurate, the room temperature is too high, and the test is not performed according to the test procedure specified in the User Manual.

3. Acceptable sequencing data should be judged along with clinical features and other test indicators to determine the test results.

[Limitation of test method]

This sequencing set is a qualitative in vitro diagnostic kit that does not have a quantitative function.

[Product performance indicators]

1. Accuracy

Test the enterprise reference Q, and the coincidence rate between the sequence information obtained by sequencing and the known reference sequence information should be $\geq 99\%$.

2. Repeatability

Repeat the test of the enterprise reference Q 5 times, and the CV value of the coincidence rate between the sequence information obtained by sequencing and the known reference sequence information is not more than 5% (n=5).

3. Inter-run variation

Test the enterprise reference Q 5 times using three different batches of kits respectively, and the CV value of the coincidence rate between the sequence information obtained by sequencing and the known sequence information is not more than 5% (n=15).

[Warnings and Precautions]

1. This product is for in vitro diagnosis only.

2. Please read the User Guide carefully before use, master the operating method, and get familiar with the warnings and precautions.

3. Do not swallow any samples and reagents. Avoid direct contact with skin and eyes. If this happens, rinse them immediately with plenty of fresh water and seek medical advice in time.

4. Samples and wastes are potentially infectious and should be disposed of in accordance with local regulations.

[References]

- 1. Dean, F. B. et al. Comprehensive human genome amplification using multipledisplacement amplification. Proc. Natl Acad. Sci. USA. 99, 5261–5266 (2002).
- 2. Peters, B.A., et al., Accurate whole genome sequencing and haplotyping from-3. 10 to 20 human cells. Nature 487,190-195(2012).
- 4. Drmanac, R. Nucleic acid analysis by random mixtures of non-overlapping fragments. US patent 7,901 891 (2006).
- 5. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
- Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

[Basic Information]

Registrant / Manufacturer: Wuhan MGI Tech Co., Ltd. Address: Building 24, Stage 3.1, BioLake Accelerator, No.388, 2nd Gaoxin Road, Donghu New Technology Development Zone, 430075, Wuhan, China Hotline: +86-4000-966-988 After-sales service provider: Wuhan MGI Tech Co., Ltd. Hotline: +86-4000-966-988 Manufacturing base: Building 24, Stage 3.1, BioLake Accelerator, No.388, 2nd Gaoxin Road, Donghu New Technology Development Zone, 430075, Wuhan, China Postcode: 430075

Web: <u>www.mgitech.cn</u>

[Date of approval and date of revision]

Date of approval: October 22, 2019